skip to main content


Search for: All records

Creators/Authors contains: "Kojiguchi, Naoto"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Superoutbursts in WZ Sge-type dwarf novae (DNe) are characterized by both early superhumps and ordinary superhumps originating from the 2 : 1 and 3 : 1 resonances, respectively. However, some WZ Sge-type DNe show a superoutburst lacking early superhumps; it is not well established how these differ from superoutbursts with an early superhump phase. We report time-resolved photometric observations of the WZ Sge-type DN V627 Peg during its 2021 superoutburst. The detection of ordinary superhumps before the superoutburst peak highlights that this 2021 superoutburst of V627 Peg, like that in 2014, did not feature an early superhump phase. The duration of stage B superhumps was slightly longer in the 2010 superoutburst accompanied by early superhumps than that in the 2014 and 2021 superoutbursts, which lacked early superhumps. This result suggests that an accretion disk experiencing the 2 : 1 resonance may have a larger mass at the inner part of the disk and hence needs more time for the inner disk to become eccentric. The presence of a precursor outburst in the 2021 superoutburst suggests that the maximum disk radius should be smaller than that of the 2014 superoutburst, even though the duration of quiescence was longer than that before the 2021 superoutburst. This could be accomplished if the 2021 superoutburst was triggered as an inside-out outburst or if the mass transfer rate in quiescence changes by a factor of two, suggesting that the outburst mechanism and quiescence state of WZ Sge-type DNe may have more variety than ever thought.

     
    more » « less
  2. Abstract

    In the first days of WZ Sge-type dwarf nova (DN) outbursts, the 2 : 1 resonance induces a spiral arm structure in the accretion disk, which is observed as early superhumps in optical light curves. We reports on our optical observations of an eclipsing WZ Sge-type DN PNV J00444033+4113068 during its 2021 superoutburst using the 3.8 m Seimei telescope and through the Variable Star Network collaboration. The eclipse analysis showed that its orbital period was 0.055425534(1) d. Our observations confirmed early superhumps with an amplitude of 0.7 mag, the largest amplitude among known WZ Sge-type DNe. More interestingly, its early superhumps became the reddest around their secondary minimum, whereas other WZ Sge-type DNe show the reddest color around the early superhump maximum. The spectrum around the peak of the outburst showed two double-peaked emission lines of He ii 4686 Å and Hα with a peak separation of ≥700 km s−1, supporting a very high-inclination system. With the early superhump mapping, the unique profile and color of the early superhump are successfully reproduced by an accretion disk with a vertically extended double arm structure. Therefore, a large amplitude and a unique color behavior of the early superhumps in PNV J00444033+4113068 can be explained by the 2 : 1 resonance model along with other WZ Sge-type DNe.

     
    more » « less